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• Integration of (Simulation/Data/Learning)
– Wisteria/BDEC-01
– h3-Open-BDEC

• Applications on Wisteria/BDEC-01 with h3-Open-BDEC
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• BDEC (Big Data & Extreme Computing)
– Platform for Integration of (S+D+L)
– Focusing on S (Simulation)

• AI for HPC, (Classical) AI for Science
– Planning started in 2015

BDEC (Big Data & 
Extreme Computing)

S + D + L

• Various Types of Workloads
– Computational Science & Engineering: Simulations
– Big Data Analytics +AI, Machine Learning …

• Integration of (Simulation+Data+ Learning) 
(S+D+L) is important towards Society 5.0, Human-
Centered Society proposed by Japanese Gov.
– By Integration of Cyber & Physical Space

Integration of (S+D+L) has been our 
main strategy in recent 10 years



Wisteria/BDEC -01
• Operation started on May 14, 2021
• 33.1 PF, 8.38 PB/sec by Fujitsu

– ~4.5 MVA with Cooling, ~360m2

6

• 2 Types of Node Groups
– Hierarchical, Hybrid, Heterogeneous (h3)
– Simulation Node Group: Odyssey

• Fujitsu PRIMEHPC FX1000 (A64FX), 25.9 PF
– 7,680 nodes (368,640 cores), Tofu-D
– General Purpose CPU + HBM
– Commercial Version of “Fugaku”

– Data/Learning Node Group: Aquarius
• Data Analytics & AI/Machine Learning
• Intel Xeon Ice Lake + NVIDIA A100, 7.2PF 

– 45 nodes (90x Ice Lake, 360x A100), IB-HDR
• DL nodes are connected to external resources directly

• File Systems: SFS (Shared/Large) + FFS (Fast/Small)

The 1st BDEC System 
(Big Data & Extreme Computing)
HW Platform for Integration of (S+D+L)
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25.8 PB, 
0.50 TB/s 

Data/Learning Nodes
Aquarius

7.20 PF, 578.2 TB/s
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Fast File 
System
（FFS）

1.0 PB, 
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Simulation Nodes
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Shared File 
System
（SFS）

25.8 PB, 
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Data/Learning Nodes
Aquarius
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Optimization of Models/Parameters for 
Simulations by Data Analytics & Machine 
Learning (S+D+L)
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• Integration of (Simulation/Data/Learning)
– Wisteria/BDEC-01
– h3-Open-BDEC

• Applications on Wisteria/BDEC-01 with h3-Open-BDEC



h3-Open -BDEC: Innovative Software Platform 
for Integration of (S+D+L) on the BDEC 
System, such as Wisteria/BDEC -01

15

• 5-year project supported by 
Japanese Government (JSPS) 
since 2019
– FY.2023 is the final year

• Until the end of March 2024

• Leading-PI: Kengo Nakajima 
(The University of Tokyo)

• Total Budget: 1.41M USD

15
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Final Goal stated in the Proposal of 
h3-Open -BDEC (Nov. 2018)

19

• We aim to reduce the amount of computations and power 
consumption by more than 10 times while maintaining the same 
accuracy as conventional methods in multi-level simulations that 
integrate (S+D+L).
– Mixed Precision/Adaptive Precision
– Machine Learning, Hierarchical Data Driven Approach
– Heterogeneous Computing



• “Three” Innovations
– New Principles for Numerical 

Analysis by Adaptive Precision, 
Automatic Tuning & Accuracy 
Verification

– Integration of (S+D+L) by 
Hierarchical Data Driven Approach 
(hDDA)

– Software & Utilities for 
Heterogenous Environment, such as 
Wisteria/BDEC-01

h3-Open -BDEC Innovative Software Platform 
for Integration of (S+D+L) on the BDEC 
System, such as Wisteria/BDEC -01

2020



Adaptive Precision Computing with FP21/FP42
Masatoshi Kawai (kawai@cc.u-tokyo.ac.jp)

2121

In recent years, the usefulness of low-precision floating-point 
representation has been studied in various fields such as machine 
learning. Low accuracy can be expected to have effects such as 
shortening calculation time and reducing power consumption. For 
example, in an application with a memory bandwidth bottleneck, the 
effect of reducing the calculation time by reducing the amount of 
memory transfer is significant. However, in fields such as iterative 
methods, it is common to use FP64 because the calculation accuracy 
strongly affects the convergence, and there are few application 
examples of low-precision arithmetic. This study investigates the 
applicability of low-precision representation to the Krylov subspace 
and stationary iterative methods. In this research, we focus on the FP32, 
FP16, and FP42, FP21, which are not standardized by IEEE754.
Developed method has been evaluated for ICCG solver, which solves 
linear equations derived from 3D FVM code for steady-state head 
conduction with heterogeneous material property (λ1=100, λ2=100~109). 
Generally, computation with lower precision (e.g. FP32-FP32, FP21-
FP32) becomes unstable, if condition number of the coefficient matrix 
is larger (λ2 is larger), FP21-FP32 provides the best performance if λ2

is up to 104. (“FP21-FP32” means “matrices are in FP21, and vectors 
are in FP32)
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• “Three” Innovations
– New Principles for Numerical 

Analysis by Adaptive Precision, 
Automatic Tuning & Accuracy 
Verification

– Integration of (S+D+L) by 
Hierarchical Data Driven Approach 
(hDDA)

– Software & Utilities for 
Heterogenous Environment, such as 
Wisteria/BDEC-01

h3-Open -BDEC Innovative Software Platform 
for Integration of (S+D+L) on the BDEC 
System, such as Wisteria/BDEC -01

2222
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Acceleration of Transient CFD Simulations using ML/CNN
Integration of (S+D+L), AI for HPC/AI for Science

[c/o Takashi Shimokawabe (ITC/U.Tokyo)]

Initial Target:
Estimating O(10) 
time steps ahead in 
transient CFD 
simulations



Prediction of steady flows using convolutional neur al networks (CNNs)

24

Computation time
LBM (82,000steps) : 41.1 sec
CNN prediction: 0.6 sec

u (velocity in x dir) u

v (velocity in y dir) v

CNN Prediction LBM Ground truth

CNNs

Input
• Signed distance function 

(Geometry)
• Boundary conditions of 

velocity (u, v)

Output
• Velocity (u, v)

CNN prediction has achieved high accuracy with sign ificant reduction in calculation time.

[c/o Takashi Shimokawabe (ITC/U.Tokyo)]



Prediction by CNN with boundary exchange
Predicting simulation results on large domain using CNN with boundary exchange.

The network model trained for a single domain is applied to the decomposed subdomains to predict 
the simulation results in each subdomain.

 In order to maintain consistency between values in the subdomains, boundary exchange between 
neighbor subdomains is performed.

CNN and boundary exchange are performed iteratively until values converge.

Input Output

Boundary exchange

Iterative loop

Signed distance function
Boundary conditions

Velocity

CNN

u

CNN prediction 
( Initial )

LBM Ground Truth 

( Final ) 

Converged

Domain size：748 x 364
(9 decomposed subdomains)

Mean error  ：3.89％
Comp. time ：3.82 s



Our proposal ー BOnd Targeting Network (BOTAN)

nodes = particle type

edges 
= relative positions

Graph 
Neural

Networks

nodes = particle motion

edges = relative motion

INPUT OUTPUT

Machine learning slow molecular dynamics

H. Shiba, M. Hanai, T. Suzumura, and T. Shimokawabe, arXiv:2206.14024 (2022)



Our proposal ー BOnd Targeting Network (BOTAN)

Machine learning slow molecular dynamics

H. Shiba, M. Hanai, T. Suzumura, and T. Shimokawabe, arXiv:2206.14024 (2022)
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• “Three” Innovations
– New Principles for Numerical 

Analysis by Adaptive Precision, 
Automatic Tuning & Accuracy 
Verification

– Integration of (S+D+L) by 
Hierarchical Data Driven Approach 
(hDDA)

– Software & Utilities for 
Heterogenous Environment, such as 
Wisteria/BDEC-01

h3-Open -BDEC Innovative Software Platform 
for Integration of (S+D+L) on the BDEC 
System, such as Wisteria/BDEC -01

2828



Wisteria/BDEC -01: The First “Really 
Heterogenous” System in the World

2929



h3-Open -SYS/WaiIO-Socket
30

• Wisteria/BDEC-01
– Aquarius (GPU: NVIDIA A100)
– Odyssey (CPU: A64FX)

• Combining Odyssey-Aquarius
– Single MPI Job over O-A is 

impossible

• Connection between Odyssey-
Aquarius
– IB-EDR with 2TB/sec.
– Fast File System
– h3-Open-SYS/WaitIO-Socket

• Library for Inter-Process 
Communication through IB-
EDR with MPI-like interface

WaitIO-Socket
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API of h3-Open -SYS/WaitIO-Socket
PB (Parallel Block): Each Application 

DescriptionWaitIO API

Non-Blocking Sendwaitio_isend

Non-Blocking Receivewaitio_irecv

Termination of waitio_isend/irecvwaitio_wait

Initialization of WaitIOwaitio_init

Process # for each PB (Parallel Block)waitio_get_nprocs

Creating communication groups 
among PB’s

waitio_create_group
waitio_create_group_wranks

Rank ID in the Groupwaitio_group_rank

Size of Each Groupwaitio_group_size

Size of the Entire PBwaitio_pb_size

Rank ID of the Entire PBwaitio_pb_rank
[Sumimoto et al. 2021]



Multiphysics Coupler

• Traditional Coupler: ppOpen-MATH/MP

• Weak-Coupling of Multiple (usually two) 
Applications
– Each application does a single computation

– Ocean-Atmosphere
– Fluid-Structure

32



Atmosphere-Ocean Coupling by 
ppOpen -MATH/MP (Previous Project)
• High-resolution global atmosphere-ocean coupled simulation by NICAM 

(Atmosphere) and COCO (Ocean) through ppOpen-MATH/MP on the K 
computer is achieved. 
– ppOpen-MATH/MP is a coupling software for the models employing various 

discretization method. 

33

[C/O M. Satoh (AORI/UTokyo)@SC16]



h3-Open -UTIL/MP
Multilevel Coupler/Data Assimilation
Integration of (S+D+L)

• Extended Version of Multy-Physics Coupler
• Data Assimilation (Multiple Computations: Ensemble)

– Assimilation of Computations with Different Resolutions

– Data Assimilation by Coupled Codes
• e.g. Atmosphere-Ocean

34

• Coupling of Simulations on 
Odyssey and AI on 
Aquarius



h3-Open -UTIL/MP +
h3-Open -SYS/WaitIO-Socket
Available in June 2022

35

May 2021: MPI Only

Odyssey Aquarius

IB-EDR

June 2022: Coupler ＋WaitIO
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• Integration of (Simulation/Data/Learning)
– Wisteria/BDEC-01
– h3-Open-BDEC

• Applications on Wisteria/BDEC -01 with h3-Open-
BDEC
– Earthquake Simulations
– (Global Cloud Simulation+AI) Coupling
– Ensemble Coupling
– International Collaboration through JHPCN



Early Forecast of Long -Period Ground Motions 
via Data Assimilation of Observation and 
Simulations [Furumura et al. 2018]
https://doi.org/10.1029/2018GL081163

37

• New method for the early forecast of long-period (> 3–10 s) ground motions generated 
by large earthquakes based on the data assimilation of observed ground motions and 
FDM simulations of seismic wave propagation in a 3-D heterogeneous structure 
(Seism3D/OpenSWPC-DAF （Data-Assimilation-Based Forecast ）). 

• This approach uses the dense nationwide network in Japan and 
supercomputers to perform forecasts using the assim ilated wavefields at 
speeds much faster than the actual wave propagation  speed. 

• An early alert can be issued prior to the occurrenc e of strong motions due to 
large and distant earthquakes. 

• This research inspired me to develop a system like Wisteria/BDEC-01, where 
(Simulation, Data, Learning) are integrated on a si ngle system.

37



Earthquake simulation is always with 
uncertainty 

• Subsurface/Underground Structure
– Heterogenous, Random, Stochastic
– Fluctuations

• Traditional Simulations
– Forward Simulations

• Integration of Simulation/Observation is 
essential

• New Types of Methods for Simulations 
combined with Data Assimilation/Real-
Time Observation is under development
– Forecast by Simulations, Correction by 

Data Assimilation

38

[c/o Prof. T. Furumura, 
ERI/U.Tokyo]



3D Earthquake Simulation 
with Real-Time Data 
Observation/Assimilation
Simulation of Strong Motion (Wave 
Propagation) by 3D FDM

[c/o Prof. T.Furumura
(ERI/U.Tokyo)]

39

JDXnet JDXnet



Real-Time Sharing of Seismic Observation is 
possible in Japan by JDXnet with SINET
Japan Data eXchange network

• Seismic Observation Data (100Hz/3-dir’s/O(103) observation points) 
by JDXnet is available through SINET in Real Time
– O(102) GB/day: available at Website of NIED
– O(105) pts in future including stations operated by industry

[c/o Prof. H.Tsuruoka
(ERI/U.Tokyo)]
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Real-Time Assimilation of “Observation+Computation”  in 
Seismic Wave Propagation [c/o Oba & Furumura]

（A) Pure Simulation （B）Assimilation+Sim.

Epicenter

：Obs. Pts.
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（A）Pure S （B）A+S

10 sec.

20 sec.

30 sec.

・Data Assimilation of Wave Propagation 
by “Optimal Interpolation Technique”

(No info for Epicenter needed)

��
� � ��

�
���	� 
���

�
�

Comp.Assim. Obs. Comp.
Residual

���
�

� ���
�

Comp. Assim.

�: Wave Propagation 
simulation

�: Time Step
�: Weighting Matrix

41
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Real-Time Assimilation of “Observation+Computation”  in 
Seismic Wave Propagation [c/o Oba & Furumura]

（A) Pure Simulation （B）Assimilation+Sim.

Epicenter

：Obs. Pts.

42

（A）Pure S （B）A+S

10 sec.

20 sec.

30 sec.

・Data Assimilation of Wave Propagation 
by “Optimal Interpolation Technique”

(No info for Epicenter needed)

��
� � ��

�
���	� 
���

�
�

Comp.Assim. Obs. Comp.
Residual

���
�

� ���
�

Comp. Assim.

�: Wave Propagation 
simulation

�: Time Step
�: Weighting Matrix
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Initial Conditions 
are created by 
Interpolation of 
Observed Results



43

Comp.Assim. Obs. Comp.
Residual

Comp. Assim.

: Wave Propagation 
simulation

: Time Step
: Weighting MatrixStarting from (A+S: 

Assim+Sim .) to (Pure 
S: Pure Simulation)

[c/o Prof. T. Furumura, ERI/U.Tokyo]



3D Earthquake Simulation 
with Real-Time Data 
Observation/Assimilation
Simulation of Strong Motion (Wave 
Propagation) by 3D FDM

[c/o Prof. T.Furumura
(ERI/U.Tokyo)]
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JDXnet JDXnet



3D Earthquake Simulation with Real -Time Data 
Observation/Assimilation on Wisteria/BDEC -01 

45

Seism3D/
OpenSWPC-DAF

Filter

External Server 
for Observed  

Data

Simulation Nodes:
Odyssey

Fujitsu/Arm A64FX
25.9PF, 7.8 PB/s

Data/Learning 
Nodes: Aquarius
Intel Ice Lake + NVIDIA A100

7.20 PF, 578.2 TB/s

2.0 TB/s

Visualizer

Output 
&
Movie 

JDXnet

Observed Data

Obs. Data

Mesh Data UG Model

h3-Open-SYS/WaitIO-Socket



Communications by WaitIO -Socket

46

program dmy_filter

<省略: 型宣言等>

call mpi_init (ierr)

call mpi_comm_size (MPI_COMM_WORLD, nprocs, ierr)

call mpi_comm_rank (MPI_COMM_WORLD, myrank,  ierr)

call WAITIO_CREATE_UNIVERSE (WAITIO_COMM_UNIVERSE, ierr)

if (myrank==0) then

open(100,file='./obsfile_list.txt’, form=‘formatted’, status=‘old’, iostat=ierr)

do i=1,300

<省略: obsデータ読み込み処理>

print *,"Send obs data ...... "

call WAITIO_MPI_ISEND (NTMAX1_o, 1,           WAITIO_MPI_INTEGER,  2,1, WAITIO_COMM_UNIVERSE,req(1,1), ierr)

call WAITIO_MPI_ISEND (DT_o,     1,           WAITIO_MPI_FLOAT,    2,2, WAITIO_COMM_UNIVERSE,req(1,2), ierr)

call WAITIO_MPI_ISEND (NST_o,    1,           WAITIO_MPI_INTEGER,  2,3, WAITIO_COMM_UNIVERSE,req(1,3), ierr)

call WAITIO_MPI_ISEND (AT_o,     1,           WAITIO_MPI_FLOAT,    2,4, WAITIO_COMM_UNIVERSE,req(1,4), ierr)

call WAITIO_MPI_ISEND (T0_o,     1,           WAITIO_MPI_FLOAT,    2,5, WAITIO_COMM_UNIVERSE,req(1,5), ierr)

call WAITIO_MPI_ISEND (ISO_X_o,  NSMAX,       WAITIO_MPI_INTEGER,  2,6, WAITIO_COMM_UNIVERSE,req(1,6), ierr)

call WAITIO_MPI_ISEND (ISO_Y_o,  NSMAX,       WAITIO_MPI_INTEGER,  2,7, WAITIO_COMM_UNIVERSE,req(1,7), ierr)

call WAITIO_MPI_ISEND (ISO_Z_o,  NSMAX,       WAITIO_MPI_INTEGER,  2,8, WAITIO_COMM_UNIVERSE,req(1,8), ierr)

call WAITIO_MPI_ISEND (ISTX_o,   NST,         WAITIO_MPI_INTEGER,  2,9, WAITIO_COMM_UNIVERSE,req(1,9), ierr)

call WAITIO_MPI_ISEND (ISTY_o,   NST,         WAITIO_MPI_INTEGER,  2,10,WAITIO_COMM_UNIVERSE,req(1,10),ierr)

call WAITIO_MPI_ISEND (ISTZ_o,   NST,         WAITIO_MPI_INTEGER,  2,11,WAITIO_COMM_UNIVERSE,req(1,11),ierr)

call WAITIO_MPI_ISEND (STC_o,    6*NST,       WAITIO_MPI_CHAR,     2,12,WAITIO_COMM_UNIVERSE,req(1,12),ierr)

call WAITIO_MPI_ISEND (VxAll_obs,NST*NOBS_LEN,WAITIO_MPI_FLOAT,    2,13,WAITIO_COMM_UNIVERSE,req(1,13),ierr)

call WAITIO_MPI_ISEND (VyAll_obs,NST*NOBS_LEN,WAITIO_MPI_FLOAT,    2,14,WAITIO_COMM_UNIVERSE,req(1,14),ierr)

call WAITIO_MPI_ISEND (VzAll_obs,NST*NOBS_LEN,WAITIO_MPI_FLOAT,    2,15,WAITIO_COMM_UNIVERSE,req(1,15),ierr)

call WAITIO_MPI_WAITALL (15,req, status, ierr)

call sleep(1)

enddo

close (100)

endif

call WAITIO_FINALIZE (ierr)

call mpi_finalize (ierr)

end

[Kasai et al. 2021]

Aquarius: SEND Odyssey: RECV



Example: Off Niigata 2007 Mw6.6 Earthquake
• Observed Data: Stored in External Server 
• Aquarius receives observed data, and apply filtering 
• “Data Assimilation + Simulation (A+S)”, and “Forecast by Simulation 

(Pure S)” are separated codes, while same number of computing 
nodes were used on Odyssey

• Movies were created after simulations (O(10) sec.)
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( )
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Comp.Assim. Obs. Comp.
Residual

Comp. Assim.

: Wave Propagation 
simulation

: Time Step
: Weighting Matrix

• Seism3D/OpenSWPC-DAF
– 3D FDM + Optimal Interpolation Technique 

for Data Assimilation

– Each Mesh: 240m×240m×240m

– 1,920×1,920×240 meshes（8.85×108
）

– 460.8 km×460.8 km×57.6 km
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■ Hi-net (Short Period) 349 pts
● F-net (Broadband)       18 pts

Epicenter

Off Niigata 2007 Mw6.6 Earthquake [c/o Prof. T. Furumura, 
ERI/U.Tokyo]
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P S

482 K-NET, KiK-net Observation

Input

Assimilation by 70s forecast

Data Assimilation + Pure Simulation/Forecast

70s for Assimilation

Results at Kotoh ▲ (N.KOTH)
N   35°37.0’
E 139°46.9’

Epicenter
(Off-Niigata)

Point at Kotoh
(Tokyo)

▲

50s

70s

90s

110s

Obs

(A+S)⇒(Pure S)@30s

(A+S) (Pure S)

Off Niigata 2007 Mw6.6 
Earthquake



Future Directions towards 
Integration of (S+D+L)
• Accurate Prediction of Seismic Wave 

Propagation with Real-Time Data 
Observation/Assimilation
– Emergency Info. for Safer Evacuation
– 10x faster than real phenomena with 

O(103) nodes of supercomputers
• 3D Underground Model

– Heterogeneous, Observation is difficult
– Inversion analyses of seismic waves are 

important for prediction of structure of 
underground model

– ML may be utilized for acceleration of this 
prediction based on analyses of small 
earthquakes in normal time (e.q. Mw < 3.0)

– More sophisticated DA method (e.g. 4DVar) 
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Actually, construction of 3D Underground 
Model by this Model for Long -Period Seismic 
Wave Propagation is not realistic

• Local models with smaller meshes should be used

51

Replica Exchange 
Monte Carlo
Nagao et al.

2nd Order Adjoint
Nagao et al.

Large-Scale ML
Ichimura, Fujita

SC22 GB Finalists



52

• Integration of (Simulation/Data/Learning)
– Wisteria/BDEC-01
– h3-Open-BDEC

• Applications on Wisteria/BDEC -01 with h3-Open-
BDEC
– Earthquake Simulations
– (Global Cloud Simulation+AI) Coupling
– Ensemble Coupling
– International Collaboration through JHPCN



h3-Open -UTIL/MP (h3o -U/MP)  
Extended Multiphysics Coupler

53



Replacing

this part

with AI

 Motivation of this experiment
 Tow types of Atmospheric models: Cloud resolving VS Cloud 

parameterizing

 Could resolving model is difficult to use for climate simulation

 Parameterized model has many assumptions 

 Replacing low-resolution cloud processes calculation with ML!

Diagram of applying ML to an atmospheric model

High Resolution Atmospheric Model
(Convection-Resolving Mode)

Low Resolution Atmospheric Model
(Convection-Parameterization Mode)

Physical process

Input

Output

Coupling with
Grid Remapping

ML App
(Python)

Coupling without
Grid Remapping

Coupling Phase 1
Training with high-resolution 

NICAM data

Coupling Phase 2
Replacing Physical Process 
in Low-Resolution NICAM 

with Machine Learning

Atmosphere-ML Coupling
[Yashiro (NIES), Arakawa (ClimTech/U.Tokyo)]

75% 25%

Odyssey Aquarius

h3-Open-UTIL/MP 
(Coupler)

+
h3-Open-SYS/WaitIO-

Socket
~0%



Atmosphere-ML Coupling

 Model component emulation (surrogation)

 The emulation target in this study is cloud microphysical processes

(phase changes, collision, coagulation, and precipitation)

 Atmospheric pressure, temperature, and vertical distribution of

water will change between before and after computing the cloud

microphysical processes

 Atmospheric model and ML Library
 NICAM (global non-hydrostatic model with icosahedral grid) + 

Pytorch (three layers MLP)

 Methodology
 ML is trained to reproduce output variable from input variables of 

cloud microphysical subroutine

 Training data
 Input : total air density (rho), internal energy (ein), density of water 

vapor (rho_q) 

 Output : tendencies of input variables computed within the
cloud physics subroutine

Δ�ℎ�

Δ�

Δ���

Δ�

Δ�ℎ�_�

Δ�



Test calculation

Total air density

Internal energy

Density of 
water vapor

Input Simulation Output

 Compute output variables from input variables and PyTorch
 The rough distribution of all variables is well reproduced

 The reproduction of extreme values is no good

ML outputSimulations Prediction by ML/NN



Reproducibility Improvement

 for more accurate reproducibility
 Variable selection is important

 NICAM subroutine mp_driver has INPUT:23, OUTPUT: 27, INOUT: 11

 Reproducibility was improved by increasing the number of input 
variables to five.

coef.interceptslope

0.807-0.00010.598d_rho

0.798-0.00040.555d_ein

0.7810.00000.532d_rhoq

coef.interseptslope

0.857-0.00000.688d_rho

0.8580.00110.710 d_ein

0.8430.00030.692d_rhoq

d_rho calculated 

from thee input variables

(rho, ein, rhoq)

d_rho calculated 

from five input variables

(three + vertical wind and precipitation)



How to run the workloads
58

• Total Number of Nodes
– Odyssey: 7,680 nodes: not so crowded
– Aquarius: 45 nodes, 360 GPUs, very 

crowded

• One node of Aquarius is reserved 
for this type of workload on the 
integration of (S+D+L)

• 2 separate jobs (Odyssey, Aquarius) 
should be submitted

• If both jobs “grab” resources, 
execution starts.

• More flexible (& complicated) policy 
needed



Examples of Scripts [Sumimoto , Arakawa]
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#!/bin/bash
#PJM -N "test_waitio"
#PJM -L rscgrp=coupler-lec-o
#PJM -L node=10:noncont
#PJM --mpi proc=80
#PJM -L elapse=00:10:00
#PJM -g gt00
#PJM -j
#PJM -e err

module load fj
module load fjmpi
module load waitio

export WAITIO_MASTER_HOST=`hostname`
export WAITIO_MASTER_PORT=7100
export WAITIO_PBID=0
export WAITIO_NPB=2

hostname
waitio-serv-a64fx -d -m $WAITIO_MASTER_HOST

#mpiexec -oferr-proc errnicam -np 160 ./nicam
mpiexec -np 80 ./nicam

#!/bin/bash
#PJM -N "test_waitio"
#PJM -L rscgrp=coupler-lec-a
#PJM -L node=1
#PJM --mpi proc=10
#PJM -L elapse=00:10:00
#PJM -g gt00
#PJM -j
#PJM -e err

module unload aquarius
module unload gcc ompi
module load intel
module load impi
module load waitio

export WAITIO_MASTER_HOST=`waitio-serv -c`
export WAITIO_MASTER_PORT=7100
export WAITIO_PBID=1
export WAITIO_NPB=2

module unload intel
module unload impi
module load gcc ompi

mpiexec -n 10 ./ada

Odyssey for Simulation Aquarius for AI
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• Integration of (Simulation/Data/Learning)
– Wisteria/BDEC-01
– h3-Open-BDEC

• Applications on Wisteria/BDEC -01 with h3-Open-
BDEC
– Earthquake Simulations
– (Global Cloud Simulation+AI) Coupling
– Ensemble Coupling [Yashiro, Arakwa]
– International Collaboration through JHPCN



h3-Open -UTIL/MP
Multilevel Coupler/Data Assimilation
Integration of (S+D+L)

• Extended Version of Multy-Physics Coupler
• Data Assimilation (Multiple Computations: Ensemble)

– Assimilation of Computations with Different Resolutions

– Data Assimilation by Coupled Codes
• e.g. Atmosphere-Ocean

61

• Coupling of Simulations on 
Odyssey and AI on 
Aquarius



Ensemble-based Data Assimilation (1/2)
62

• Ensemble-based data assimilation (in global atmospheric simulation 
for climate/weather prediction) combines data assimilation and ensemble 
simulations for accurate predictions, demanding significant computational 
resources for high-resolution simulations. 

• 160-nodes of Odyssey are needed 
for running Global Atmospheric 
Simulation by NICAM with 14km 
meshes

160 nodes x 64 members14km ensemble DA (GL09)

Observation

Assimilation

Ensemble



Ensemble-based Data Assimilation (2/2)
63

• Usually, we do O(102) ensembles for mid-range forecasts, while we can 
obtain very accurate prediction if we can do O(103) ensembles [Miyoshi 
et al. 2014]

[Miyoshi et al. 2014]



Ensemble-based Data Assimilation (2/2)
64

• Usually, we do O(102) ensembles for mid-range forecasts, while we can 
obtain very accurate prediction if we can do O(103) ensembles [Miyoshi 
et al. 2014]

• Currently, we do not have enough computational resources for O(103) 
ensembles in reasonable computation time.

160 nodes x 64 members14km ensemble DA (GL09)

Observation

Assimilation

Ensemble

• If we do 64 ensembles for 9-Hour 
Ensemble-based Data 
Assimilation, we need 2,240 
Node-Hours (NH), using 160-
nodes for each ensemble
 787.5 sec for each ensemble



Ensemble Coupling (1/3)  Ensemble+Coupling
65

• Coupling low-resolution ensemble data assimilation with a high-
resolution simulation ⇒ reducing resource requirements.

• In FY.2023, preliminary evaluations of ensemble coupling were 
conducted for 9-hour simulations by NICAM on 320 nodes of Odyssey.
– 160-nodes for low resolution (224km), 160-nodes for high-resolution (14km)

data exchange and 

grid remapping 

by the coupler

Nudging large-scale 

status 

14km filtered nudging
224km ensemble DA

Observation

Assimilation

160 nodes

640 processes

Coupling

Ensemble, 160 nodes

10 processes (2.5-nodes)x 64 members
[Yashiro, Arakawa]



Ensemble Coupling (2/3)  Ensemble+Coupling
66

data exchange and 

grid remapping 

by the coupler

Nudging large-scale 

status 

14km filtered nudging
224km ensemble DA

Observation

Assimilation

160 nodes

640 processes

Coupling

 64 ensembles on a 224km low-resolution mesh, coupled with a 14km 
high-resolution mesh model
 FP32 (single-precision) was applied, while original code was by FP64. 

 160-nodes for low resolution (224km): 2.5-nodes x 64-members

Ensemble, 160 nodes

10 processes (2.5-nodes)x 64 members
[Yashiro, Arakawa]



Ensemble Coupling (2/3)  Ensemble+Coupling
67
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[Yashiro, Arakawa]

 64 ensembles on a 224km low-resolution mesh, coupled with a 14km 
high-resolution mesh model
 FP32 (single-precision) was applied, while original code was by FP64. 

 160-nodes for low resolution (224km): 2.5-nodes x 64-members
 10 MPI Processes for Each Case: 4 for each Compute Node of A64FX, 2.5 nodes



Ensemble Coupling (3/3)  Ensemble+Coupling
68

data exchange and 

grid remapping 

by the coupler

Nudging large-scale 

status 

14km filtered nudging
224km ensemble DA

Observation

Assimilation

160 nodes

640 processes

Coupling

 This resulted in a performance improvement of over 100 times (with 
FP64⇒FP32): 2,240 NH⇒19.3 NH

 Accurate prediction by O(103) ensembles is possible using reasonable 
computational resources, and in reasonable computation time.

Ensemble, 160 nodes

10 processes (2.5-nodes)x 64 members [Yashiro, Arakawa]
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Ensemble-
Coupling
224km+
14km
19.3 NH

Data 
Assimilation
14km
2,240 NH

Temperature@Ground Surface Vapor Density

• Preliminary Results for 9-Hour Integration
• Detailed verification of reproducibility requires integration over at least 

ONE MONTH and meteorological analyses.
• Accurate prediction by O(103) ensembles is possible [Yashiro, Arakawa]



Final Goal stated in the Proposal of 
h3-Open -BDEC (Nov. 2018)

70

• We aim to reduce the amount of computations and power 
consumption by more than 10 times while maintaining the same 
accuracy as conventional methods in multi-level simulations that 
integrate (S+D+L).
– Mixed Precision/Adaptive Precision
– Machine Learning, Hierarchical Data Driven Approach
– Heterogeneous Computing
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• Integration of (Simulation/Data/Learning)
– Wisteria/BDEC-01
– h3-Open-BDEC

• Applications on Wisteria/BDEC -01 with h3-Open-
BDEC
– Earthquake Simulations
– (Global Cloud Simulation+AI) Coupling
– Ensemble Coupling [Yashiro, Arakwa] 
– International Collaboration through JHPCN



JHPCN
https://jhpcn-kyoten.itc.u-tokyo.ac.jp/en/
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• Joint Usage/Research Center for 
Interdisciplinary Large-scale Information 
Infrastructures (2010-)

• Alliance of SC Centers of 8 National 
Universities in Japan
– 7 “Imperial” Universities + Tokyo Tech
– Core Institute: ITC/U.Tokyo
– Total 185+PFLOPS (April 2024)

• MoU with NHR/Germany since July 11, 2024
• Promotion of collaborative (fundamental, 

interdisciplinary) research projects using 
facilities & human resources in 8 Centers
– Proposal-based, Resources of Supercomputers are 

awarded for accepted proposals



FY.2023-2025, JHPCN Project 
Innovative Computational Science by Integration of 
Simulation/Data/Learning on Heterogeneous Supercomp uters

73

 Jülich Supercomputing Centre（JSC）

 Rudjer Boskovic Institute, Centre for Informatics and 
Computing, Croatia

 Friedrich-Alexander-Universität Erlangen-Nürnberg（FAU）

 French Atomic Energy Commission (CEA)
 Bergische Universität Wuppertal (BUW)
 Karlsruher Institut für Technologie (KIT)(FY.2023:35，FY.2024:49)



History & Plans
https://jhpcn-kyoten.itc.u-tokyo.ac.jp/en/

• Innovative Computational Science by Integration of 
Simulation/Data/Learning on Heterogeneous Supercomputers
– FY.2021 & 2022: Focused on Earthquake Simulations

• Univ. Tokyo (ITC, ERI), Nagoya U., Kyushu U., NIES, Fujitsu

– FY.2023-2025 (plan): Other applications and International Collaborations, 
Popularization of SW usage (e.g. WaitIO, Coupler)

• Jülich Supercomputing Centre（JSC）：Modular Supercomputing

• Rudjer Boskovic Institute, Centre for Informatics and Computing, Croatia

• Friedrich-Alexander-Universität Erlangen-Nürnberg（FAU）

• French Atomic Energy Commission (CEA)

• Target Systems in Japan
– Wistreia/BDEC-01，Flow@Nagoya U., mdx
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Collaborations related to
Heterogeneous Computing (U.Tokyo -JSC)

75

Wisteria/BDEC-01
h3-Open-BDEC
U.Tokyo

K. Nakajima et al.

Modular 
Supercomputing 
Architecture 
(MSA), JSC

E. Suarez et al.

JHPCN WS Mar.13-15, JSC



Target Applications
• JSC

– Terrestrial Systems Modeling Platform (TSMP)
• Coupling: Groundwater Flow & Atmosphere
• https://www.terrsysmp.org/

– Chebyshev Accelerated Subspace Eigensolver (ChASE)
• Quantum Chemistry, Heterogeneous Environment
• https://github.com/ChASE-library

– Brain Aneurysm Simulations
• Multiscale，Multiphysics
• CFD Codes (m-AIA) at JSC

– https://www.hpccoe.eu/2021/06/04/m-aia/
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• CEA 
– Selection of inhibitors of the SARS-CoV-2 Main Protease

• BigDFT + Polaris/GENESIS

– Earthquake Simulation (PSD), ML with Causality



Terrestrial Systems Modeling Platform (TSMP)
(JSC, U.Tokyo)

• TSMP is a scale-consistent, highly modular, massively parallel, 
fully integrated soil-vegetation-atmosphere modeling system by 
JSC. 

• Our target is coupling COSMO/ICON (Atmosphere)-ParF low
(Surface/Subsurface Flow)-CLM(Land Surface Model). 
– The coupling of 3 models has been already done usin g OASIS3 

library on CPU-GPU heterogeneous environment. 

• In this project, we replace OASIS3 with h3-Open-BDE C, and 
coupled simulations will be possible on really 
heterogeneous systems, such as Wisteria/BDEC-01. 
– In FY.2023, we mainly ported codes to Odyssey and made preliminary 

evaluations. 

– In FY.2024, we fucus on replacing OASIS3 with h3-Open-BDEC, develop 
preliminary version of the coupled codes, and conduct preliminary 
evaluations on Wisteria/BDEC-01.
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Big-DFT with GENESIS for SARS -CoV-2 Main Protease 
(CEA, RIKEN, U.Tokyo) (1/2)

• Developing medicines for viruses like SARS-CoV-2 faces challenges, including drug 
resistance (SARS-CoV-2: Virus, COVID-19: Infection)
– Understanding and predicting drug resistance involves modeling structural changes from point 

mutations, utilizing long trajectories from classical molecular dynamics (MD/MM). 
– Mechanistic insight into mutation effects can benefit from quantum mechanical (QM) modeling. 
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BigDFT (QM)

GENESIS (RIKEN)
Polaris (CEA)

(MM/MD)



Big-DFT with GENESIS for SARS -CoV-2 Main Protease 
(CEA, RIKEN, U.Tokyo) (2/2)

• In this project, we will exploit the 
heterogeneous architecture of 
Wisteria/BDEC-01 to build a coupled QM-MM 
workflow. 
– The MM workflow will run the “GENESIS” (RIKEN) 

on Aquarius to exploit its GPU nodes and provide 
samples from a trajectory that are sent to the QM-
MM workflow running “BigDFT” on Odyssey. 

– BigDFT was already optimized for A64FX 
architecture under CEA-RIKEN collaboration. 

• In FY.2024, we will construct preliminary version 
of QM-MM workflow using h3-Open-BDEC on 
Wisteria/BDEC-01, and make evaluations.
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BigDFT (QM)
on

Odyssey

GENESIS (MM)
on

Aquarius



PSD (1/3)
Parallel Seismic Dynamics 

80

• Since FY.2021 (or before), we have continued to advance FDM-based 
Seism3D/OpenSWPC-DAF by h3-Open-BDEC on Wisteria/BDEC-01. 
– Using observation data from JDXnet, we have achieved a 3D seismic wave 

simulation by combining it with real-time data assimilation. 

• PSD developed by CEA is a massively 
parallel 3D seismic wave propagation 
simulation code based on FEM and 
implicit time-marching
– Seism3D: FDM, structured, explicit time-

marching
– PSD: FEM, unstructured (tetrahedron), 

implicit time-marching



PSD (2/3)
Parallel Seismic Dynamics 

81

• In FY.2024, we will enhance PSD with data assimilation through optimal 
interpolation technique. 

• This enables PSD to perform 3D simulations with real-time data 
assimilation. 
– We validate results by comparing PSD simulations with Seism3D/OpenSWPC-DAF. 



PSD (3/3)
Parallel Seismic Dynamics 

82

• Furthermore, we explore machine learning-based earthquake propagation 
prediction using causality from combined simulation results. 
– Unlike other machine and deep learning methods that are based on correlations 

between events, causality is a method that learns the cause-effect relationships 
between variables that provides more realistic links between them and the 
necessary information to intervene on the phenomena. 

– In this context, our goal is to enhance either the time and computational efficiency 
of earthquake simulations or gain a deeper understanding of the data. 

– We plan to achieve this by utilizing earthquake data obtained from either FEM 
simulations or real-world sensors, employing causality learning methods.

• ML with Causality easily detects sensor errors and such 
observations are excluded for DA. Moreover, it can automatically 
select optimum set of sensors for optimum interpola tion.
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• Integration of (Simulation/Data/Learning)
– Wisteria/BDEC-01
– h3-Open-BDEC

• Applications on Wisteria/BDEC-01 with h3-Open-BDEC
• Integration of (Simulation/Data/Learning) and 

Beyond
• Summary



Integration of 
Simulation/Data/Learning and Beyond
Kengo Nakajima
Information Technology Center 
The University of Tokyo
RIKEN R-CCS

16th World Congress on Computational Mechanics &  4 th Pan American 
Congress on Computational Mechanics (WCCM-PANACM Va ncouver 2024)
Vancouver, B.C., Canada, July 23, 2024



Anything is possible with WaitIO
WaitIO over Internet/cloud is possible
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“JHPC -Quantum” for QC -HPC Hybrid Platform:
Research & Development of Quantum/HPC Hybrid Platfo rm for 
Exploring the Computable Domain (FY.2023-2028) 

• RIKEN R-CCS, SoftBank
– Leading PI: Prof. Mitsuhisa Sato (RIKEN R-CCS)
– Cooperating Organizations: U.Tokyo, Osaka U.

• Supported by New Energy & Industrial Technology 
Development Organization (NEDO): Post-5G Project
– This project has a strong focus on industrial applications.
– FY.2023-2028 (5 Years)

• Two Real Quantum Computers will be installed
– IBM’s Superconducting QC at RIKEN-Kobe (100+Qubit)
– Quantinuum’s Ion-Trap QC at RIKEN-Wako (20+Qubit)

• Target Applications
– Quantum Physics, Error Mitigation, Quantum ML 86



• Quantum Computer as Accelerator of Supercomputers
– QC-HPC Hybrid

• Role of U.Tokyo
– R&D on System SW for QC-HPC Hybrid Environment 
– Extension of h3-Open-BDEC

System SW for QC -HPC Hybrid Environment (1/2)
87



• System SW for Efficient & Smooth Op. 
of QC-HPC Hybrid Environment
– QHscheduler: A job scheduler that can 

simultaneously use multiple computer 
resources distributed in remote locations

– h3-Open-BDEC/QH: Coupling to 
efficiently implement and integrate 
communication and data transfer 
between QC-HPC on-line and in real 
time: Extension of WaitIO, Coupler

System SW for QC -HPC Hybrid Environment (2/2)
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• System SW for Efficient & Smooth Op. 
of QC-HPC Hybrid Environment
– QHscheduler: A job scheduler that can 

simultaneously use multiple computer 
resources distributed in remote locations

– h3-Open-BDEC/QH: Coupling to 
efficiently implement and integrate 
communication and data transfer 
between QC-HPC on-line and in real 
time: Extension of WaitIO, Coupler

System SW for QC -HPC Hybrid Environment (2/2)
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• System SW for Efficient & Smooth Op. 
of QC-HPC Hybrid Environment
– QHscheduler: A job scheduler that can 

simultaneously use multiple computer 
resources distributed in remote locations

– h3-Open-BDEC/QH: Coupling to 
efficiently implement and integrate 
communication and data transfer 
between QC-HPC on-line and in real 
time: Extension of WaitIO, Coupler

System SW for QC -HPC Hybrid Environment (2/2)
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How to run QC -HPC Hybrid Workloads
Prof. M.Sato (RIKEN)
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QC-HPC
Client Job

QC-HPC
Client Job

QC-HPC
Client Job

QC_run

QC_run

QC_run

QC-Host

QC-run Pool

QC-run Scheduler

QC_run

QC-run 
Exec

QC-HPC Job Queue on HPC

QC-run

Aquarius

Odyssey

2
Fast File 
System
（FFS）

1 PB, 1.0 TB/s 

Simulation Nodes:
Odyssey

Fujitsu/Arm A64FX
25.9PF, 7.8 PB/s

Shared File 
System
（SFS）

25.8 PB, 500 GB/s 

Data/Learning 
Nodes: Aquarius
Intel Ice Lake + NVIDIA A100

7.20 PF, 578.2 TB/s

Platform for Integration of (S+D+L)
Big Data & Extreme Computing
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• Integration of (Simulation/Data/Learning)
– Wisteria/BDEC-01
– h3-Open-BDEC

• Applications on Wisteria/BDEC-01 with h3-Open-BDEC
• Integration of (Simulation/Data/Learning) and Beyond
• Summary



Summary
93

• Integration of (Simulation/Data/Learning) at ITC/U.Tokyo
• Wisteria/BDEC-01
• h3-Open-BDEC
• Applications
• Challenges towards Quantum Computing

• Collaborations are welcome
– nakajima@cc.u-tokyo.ac.jp



NVIDIA GH200 Grace Hopper Superchip

Hopper 
GPU

GRACE 
CPU

72c, 2.6 GHz

IB NDR HCA
ConnectX-7

LPDDR5X
120 GB

450 GB/s

512 GB/s

HBM3
96 GB

4.022 TB/s

NVLink C2C

PCIe Gen4

x4

PCIe Gen5

x8

IB NDR200

(200 Gbps)

NVMe SSD
1.92 TB

• Acc-Group: CPU+GPU: NVIDIA GH200
– Node: NVIDIA GH200 Grace-Hopper Superchip

• Grace: 72c, 3.456 TF, 120 GB, 512 GB/sec (LPDDR5X)
• H100: 66.9 TF DP-Tensor Core, 96 GB, 4,022 GB/sec (HBM3)

– Cache Coherent between CPU-GPU

• NVMe SSD for each GPU: 1.9TB, 8.0GB/sec, GPUDirect Storage 

– Total (Aggregated Performance: CPU+GPU)
• 1,120 nodes, 78.8 PF, 5.07 PB/sec, IB-NDR 200

• CPU-Group: CPU Only: Intel Xeon Max 9480 (SPR)
– Node: Intel Xeon Max 9480 (1.9 GHz, 56c) x 2

• 6.8 TF, 128 GiB, 3,200 GB/sec (HBM2e only)

– Total
• 190 nodes, 1.3 PF, IB-NDR 200
• 372 TB/sec for STREAM Triad (Peak: 608 TB/sec)

OFP-II: Miyabi (1/2)
Operation starts in January 2025
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• File System: DDN EXA Scalar, Lustre FS
– 11.3 PB (NVMe SSD) 1.0TB/sec, “Ipomoea-01” with 26 PB is also available 

• All nodes are connected with Full Bisection Bandwid th
– (400Gbps/8) ×(32×20＋16×1) = 32.8 TB/sec

• Operation starts in January 2025, h3-Open-SYS/Waito IO will be 
adopted for communication between Acc-Group and CPU -Group

OFP-II: Miyabi (2/2)
Operation starts in January 2025
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IB-NDR（400Gbps）

IB-NDR200（200） IB-HDR（200）

File System
DDN  EXA Scaler

11.3 PB, 1.0TB/sec

CPU-Group
Intel Xeon Max 

(HBM2e) 2 x 190
1.3 PF, 608 TB/sec

Acc-Group
NVIDIA GH200 1,120
78.2 PF, 5.07 PB/sec

Ipomoea-01
Common Shared Storage

26 PB



Uncertainty Quantification of 
Extreme Weather Prediction
Y. Sawada (U.Tokyo)
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• Predicting extreme weather phenomena that lead to flooding and inundation remains 
highly uncertain. 

• While existing research has focused on analyzing uncertainties related to initial 
conditions and boundary values in large-scale weather simulations, a comprehensive 
understanding of all sources of uncertainty within these simulations is crucial. 

• In this study, our goal is to construct a software framework for efficiently estimating all 
inherent uncertainties in large-scale weather simulations using Bayesian methods. 

• Additionally, we aim to create and publicly share large-scale weather data with added 
uncertainty information, enabling an investigation into the origins of uncertainty in 
predicting extreme weather events. 

• By maximizing the performance of Wisteria/BDEC-01, we address this challenging 
task.
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• (Leading-PI) Kengo Nakajima (ITC/U.Tokyo)

• (Co-PI) Takashi Furumura (ERI/U.Tokyo)

• (Co-PI) France Boillod-Cerneux (CEA)

• (Co-PI) Edoardo Di Napoli (JSC)

FY.2024 Proposal
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